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Vortex velocity probability distributions in phase-ordering kinetics
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The calculation of the point vortex velocity probability distribution functivPDF) is extended to a larger
class of systems beyond the nonconserved time-dependent Ginzburg-L@malL) model treated earlier.
The range is extended to include certain anisotropic models and the conserved order parameter case. The
VVPDF still satisfies scaling with large velocity tails as for the nonconserved isotropic case. It is shown that
the average vortex speed can be self-consistently expressed in terms of correlation functions associated with a
Gaussian auxiliary field. In the conserved order parameter case the average vortex speed detaysnas
pared to the™12 decay for the nonconserved case.
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I. INTRODUCTION VVPDF still satisfies a form similar to Eq(l) with the

. . same large velocity tail, but the average vortex speed falls
In recent work[1] it was shown that the theoretically off as t‘lgin the co?‘/]served case comp?ared to m]é% be-

predicted[2] velocity probability distribution for point vorti- h?vior found for the nonconserved case.

Ce.tslf] '3. thet case O.f al phasle—:_)rden?g syi'terrll a?rzees v(;a'r); Vé’jel The set of problems of interest here are driven by Lange-
with direct numerical simulations. In particular the predicted, . equations of the form

high velocity algebraic tail is found to be robust and the
predicted exponent confirmed. In the original papgrde- i,

scribing the theory there were assumptions concerning the TS =Ko, 2
Gaussian nature of an underlying auxiliary field. Here we

clarify this result by showing that the assumption of an un-where we assume

derlying Gaussian field is consistent and does not imply that A

the underlying order parameter field is Gaussian. We only lim K, () == O, (3)
require that the order parameter field and the auxiliary field ¥—0

share the same zeros and symmetry. The theory is also e
tended here to conserved and anisotropic systems of coa
ening point defects.

In Ref. [2] it was shown for a nonconserved time-
dependent Ginzburg-LandgaWiDGL) model that for annihi-
lating point defectsi=d, wheren is the number of compo-
nents of the order parameter aththe spatial dimensionality ay,
of the system, that the vortex velocity probability distribution ot
function (VVPDF), the probability that a given vortex has
the velocityV at timet after a quench, is given by

&nd the right-hand side is linear ih The key idea is that we
'Ste interested in that part of the equation of motion which
corresponds to the motion of vortex cores which are charac-
terized by zeros of the order parameter. An important ex-
ample is the TDGL model which is of the form

= =TTV () - V2], (4)

wherec>0, I' is a constant for a nonconserved order param-

n eter (NCOP andT"'=-DV? for a conserved order parameter
r;+1 1 (COP. Comparing Egs(4) and (3) we have
(1)

[70?(H)]V2 (1 +V (1) ™22 Oncod1) = -Tcv?2 (5)

where the parametar(t) is clearly related to the average gng

vortex speed and varies #32 for long times for the non-

c_onserved TDGL model. Both the form dﬁ(\/_,t) and the 6cop(1) =DVZ-r +cV?] (6)
time dependence af(t) have been confirmed in Refl] for

the casen=d=2. It is worth pointing out that the order pa- for the COP case. Hene=V"()|,-o andr <0 if the system
rameter growth lawL(t) for the system studied in Ref1] is unstable. Through a proper choice of length and time
has a log correctiofi3,4], L2=t/In t. This log correction scales we can choose

for L(t) is seen in the simulations in Rédfl]. There are no

P(V,1) =

log corrections found foo(t). Thus nonlinearities which Oncod1) == V7, (7)
influenceL are not seen in(t). We discuss in more detail
here the derivation of the result given by Ed) and its Ocop(l)zvi[l +V§]. (8)

extension to systems with a conserved order parameter
and simple spatial anisotropy. In the end we find that theAn anisotropic model can be assumed to be of the form
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AN 2 2 2 Thus the correlation function we compute in the next sec-
Onni = %C’”V" 2 0,V Vi © tion, G(12), is for that set of fieldsn, related toy by Eq.

) (13), for small values ofm, and ¢, which is described by a
wherec, andb, ,,are constants. This reduces to the COPGayssian distribution. Thus we assume there is a field
case ifc, =-1 andb, , =1. which is Gaussian while the statistics ¢f are largely un-

There is the underlying assumption that the nonlinear poeetermined.
tential contribution in the equation of motion must be such
that system orders via annihilating point defects.

M1 M2

Ill. CORRELATIONS FOR THE DEFECT SECTOR

Il. DEFECT DENSITIES AND CONTINUITY EQUATION We show in Sec. IV that in determining the average vor-

Wi that the instant i f th dtex speed we need certain correlation functions for the aux-
¢ assume that the instantaneous positions ot these ﬁfary field m, introduced in the last section. We show here

f_ects are determine_d by the_ ZEros of_the order paramet§f5¢ we can use the defect continuity equatitf) to show
f'el?' FuLthermgre, I'tt vvfas thmted tOUt in R%Q]' th_ftitt the that there is a self-consistent solution for mnfield that is
vortex charge en_s' y for this s.ys em can_ € WNHeMpas - Gaussian. Furthermore, we determine the correlation func-
=d(y)D where D is the Jacobian(determinant for the  tions needed to evaluate the average vortex speed explicitly.
change of variables from the set of vortex positian$)  The method we develop here is a generalization of the ap-

(wherelz vanishes to the field lZi proach due to Mazenko and Wickhdsi.
L The idea is to look at the equation generated by multiply-
i ing the continuity equation by a source function and then
b n! R AU AR AP averaging ovem. We have
10 -
1o [3p(1) 9t + T (p(DV(D)ISH) =0, (16
wheree, .. .. is then-dimensional fully antisymmetric

tensor and summation over repeated indices here and belghere S(H)=ex [d1H(1)-m(1)]. The question is whether
is implied. Furthermore, since topological charge is con-this equation can be satisfied for an underlying Gaussian
served, it was shown in Reff2] that p satisfies a continuity ~probability distribution for arbitrary external fieldi(1).

equation: To answer this question we evaluate first the quantity
ip_ = (p(1S(H)) =(S(H)A(1)D(1)), (17
E=—V ~(pv), (11)
where we introduce the simplifying notatia®{1)=8(m(1))
where the vortex velocity is given by and nowD is a function of the fieldn. When we talk about
1 correlation in the defect sector we mean averages like in Eq.
- - (17) where there is a vortex locating function inside the
DUB - (n _ 1)| EB,,U,Z,. . .,,unfvl,vz,. . .,Vn(O'r//vl)V,uzl//vz V,undfvn' average. @
(12) By taking functional derivatives we are able to generate

the correlations between fields at arbitrary space-time
It is assumed that the velocity field is used inside expressiongoints with the field at the space-time point 1. If we define
multiplied by the vortex locating function so we can use
Eq. (3) in Eq. (12). These results are rather general. Zy(1) =(S(H)4(1)) (18)
Notice thatp and v have certain important invariance

properties. If we can write then
¥, (1) =[a+ BmA(L) + - --Jm,(1) (13 <5(1)m”2(2)m7’3(3)' )= Z;l(l) — 5(2) N 5(3) - Zu(D).
for small m, and wherea and 8 are constants, it is easy to "2 "3
see thafp(y)=p(m). If we further assume, a® and s go to (19
zero, In our development a key property of the underlying Gauss-
él//,,(l) = aémy(l), (14) ian distribution function is
then (m, (WA =3 J d1G,,,, (1) —A
1 171
- > vy’ m]}lr(l)
vu(h) =v,(M). (15
If O corresponds to an operator with two gradients, as in th(faor arbitrary A. ForA:m,,z(Z) we obtain
NCOP TDGL model, then, assuming EQ.3) to be valid, (m, ()M, (2))=G, , (12) (20)
~ Vl V2 V1V2 N

Eqg. (14) follows. In the case wher® has higher-order de-
rivatives and we assume that Ed4) holds, then Eq(13) If we assume that the system is isotropic in the vector space,
must be modified. thenG, ,,(12)=4,,,G(12) and
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R — 28) back i Eq.(2 d using Eq(21 btai
<mv1(1)A>=fle(11)< 5_A> (21) (28) back into Eq.(27) and using Eq(21) we obtain
om,,(3) (SH)Y - (p(V(D))
We then need to work out 1

1)
T L ele CILED)
(SHp) = SHaD= iyt i, .
XV, ALV, A, (DZu(1) + (- OGLD), 5

XV, m,V,m,: -V#nm,,n>. (22) X(SH)6,,(VV,m,, -V, m, )], (29
Using Eq.(21) we have whereayl(l):[0/arr?vl(1)]6§m(1)) and t.he derivatives of the
product of m's vanish as in the previous case. Clearly the
reduction of the term containing, (1) follows just as for
(P = € sty VinO(LD) (S(H)p(1)) with the result: '

s
X —(SH) ALV, m, -V, m,) ). S _ 1
<(ml(l)<s< )&V, m, -V, m n>> (SHY - (V) = V)i

23 X [(OWA, (1), A, (1) -V
The derivative ofS(H) leads to the introduction of the quan- - —
tity XA, (1Zy(1) + (O()G(11)),5V,,,
XA,(1) -V, A, (D(SH) S, (1)].

A, (D)= J d1G(1DH, (1). (24) (30

We assume, and check self-consistently, thatwe must next evaluat&Z,(1) and the related quantity
(V 11))|1 —1=0. The derivatives of the product <S(H)5v1(1)>- Determination ofZ,(1) involves evaluation of

Vv, m ++V, m, with respect tan, (1) lead to contributions the Gaussian average,

wh|ch aII vanlsh because it pICkS out terrﬂ,sy which mul- dk o

tiplies €, ,, . . ande, ,, , , =0. We have then ZH(l):<5(m(1))S(H)>=f gembetma),
12 Vjoe¥ 12100 (2m)

31
(SHIPD) = sty VP (D (39)
with the result

X(SH)SDV, m, -V, m,). (25

. . e (U2[A%(D/S(D)] 1 - -
Clearly we can go through this process 1 more times to Z4(1) = expl =H, (DH, (2)G(12)
obtain(S(H)p(1))=Dx(1)Z(1) where (27SH(1))? 2 T ’
1 (32
Da1 vy ¥ Py (1
A= Dt Sty () whereS,(1)=G(11). Next we need
Vi ALV, A, (D). (26)

ddk o - —
= ——j ‘m(1)H(1)-m(1)
Next we look at the current contributions to Ed6) in (S(H)3,,(1)) f (Zﬂ)d'kn(el € )

the form
(SH)V - (p()V(1)))

N +§HV2<T)HV2<?)G(1_2)}

€
Ml(n_l)! [ R L IR S RL G YRR

d
:f % ikvlexp{— %kZG(ll) +ik -A(2)

<(SH)SDM, Y, m, -V, m). (27

We assume that

1 — — —1 4
= ex;{EHvl(l)H,,l(Z)G(lZ)} A0

R 1 iy
(D, (1) == S1)O(L)m,, (1), (28) Xexp{- MDA, <2>G<12>]ZH<1>
where O(1) is a derivative operator defined by E(). In _ Ayl(l)z " 33
Ref. [2] one has the choicé(1)=—Vf. After inserting Eq. - S(1) HA

056110-3



GENE F. MAZENKO

Putting Eqs.(32) and (33) back into Eq.(30) and allowing
the gradientVSl) to act gives

(SIH)V - (p(DV(1))) = = Dg(1)Z4(1) - DB ()T Z, (1),

(34)
where
1
B(l) = meﬂlﬂ'z" . .,,unevl,vz,. A
XV, B, DV, A, (1):V,A 1), (35
and
DB (1= _t B, (1)
o ) - (n _ 1)| E,ul,,u.z,...,/Lnevl,vz,...,vn 21
XV, A1)V, A, (1), (36)
B,,(1) = (- O(1) + Q(1)A, (1) (37)
and
Q1) = ——(O1)G(12)1.. (39)

S(1)
Putting the results together in E(L6) we obtain

J
75, PADZH(D) = De(DZu(D) + DS (DVZ4(1).
(39
We can write this in the form

dDa(1)
t

+ DA(l)aitlln Zy(1) =Dg(1) + Dy, (DV,,, In Zy(1).
(40)

After taking the derivativesZ,,(1), we can then write Eq.
(40) in the form

W(1) = W,(1), (41)
where
_IDAD o nS(D)
Wy(1) = a1, Da(1) 25,(1) Dg(1) (42)
and
Wa(1) = DA(l)(g)(T]i)) AL - %Az(l)%)

Look first atW,(1) which can be written in the form

PHYSICAL REVIEW EG69, 056110(2004

1
2( 1) = me‘“l‘p‘?' . .,,unEVl,Vz,. SV

150, )
25,1 DBy

XV, ALV, A, (1)

X V,Ll(A,,l(l) -

1

= (n—-1)! Cungige V1

XV, 0DV, ALV, A, (L), (44

where

1S, o
25 D By ().

In looking atW, we need to focus on the quantity

9, (D =A, (1) - (45)

D (DALY, AL
- o BuD

= (n _ l)' G;Ll,uz,...,/.tn V1, Vo,V

XV, ALV, A, (DADV, A1), (46)

Note that
Ep,l,,u,z,. . .,,LLnV/.LlAV( 1)V,u,2AV2(l) T V,u,nAvn(l) =€, V.. .,VnDA( 1) .
(47)
Putting this back into Eq46), we find
DS (DAY, AL
1
= me"1*”2*' . "VnEV'VZ" . .,vnBvl(l)AV(l)DA(l)
=B, (DA, (1)DA) (48)
and
A 1S, )
W) = DA S (Avlm 25,1 DBy
_ A1
=Dl g ) 9D (49

Using Egs.(44) and (49) in Eq. (41) we find a solution for
generalH if

o, =Am -2V 1) B 1)=0.

25%(1) 0

This will hold for all source fieldH if
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o 1S
MlG(lZ) 25,(1) G(12)=[-0(1) +Q(1)]G(12).

(51)

Thus the average of the continuity equatid®) is satisfied

by a Gaussian probability distribution if the associated vari-

anceG(12) satisfies Eq(51).

IV. SOLUTION FOR G(12)

We can solve Eq(51) for G(12) in some generality. The

first step is to write
G(12) = VS(1)S(2)f(12), (52
whereS,(1)=G(11). Inserting this form into Eq(51) gives

%f(lZ) =[- O(1) + Q(1)]f(12). (53)
1

We assume that the system is translationally invariant and o

Fourier transformation the operaté(l) is diagonalizedand
time independent. We have then

&itlnq,tl,tz) =[-0(@ + QD).  (54)

We see thaf)(1), defined by Eq(38), is determined by the

constraint
o= | e @ity (55)
- (271_)(_1 a)r1(q,iy,1).
We also have the equation
Jd
a_tf(qytlth) =[-0(q) + Q(2)]f(q,ty,tp). (56)
2

Adding Egs.(54) and(56) and setting;=t,=t we obtain for
the equal-time correlation functiofiq,t) =f(q,t,t):

Z1@v=2-0@+0@l@y. (57

For equal times we have from E?2) thatf(11)=1 or

_ [ %
1—J (Zﬂ)df(q,t). (58
The partial solution for Eq(57) is given by
t
f(q,t) = eXp(Zf d7Q(7) - O(a)] )f(q,to)
to
= RA(t,to)e 2 0f(q,ty), (59
where
&1
R(t;,ty) = exp( dr Q(7) ) (60
t

We then need to solve fdR(t). Inserting Eq(59) into Eq.
(58) gives

PHYSICAL REVIEW E 69, 056110(2004)

1 =R2(t,tx)1(t,to), (61)
where
I(t,ty) = f iqd e 200 Ef(q ). (62)
(2m)
We then have from Eq61)
R2(t,to) = 174t t) . (63)
The constraint condition, Eq455), is given by
0 =R [ 0@ ug =~ .
(64)

Thus the determination d2(1) is reduced to evaluation of
the integrall(t,ty). The equal time correlation function is
ﬂiven then by

f(q,t) =174t tp)e P01 (q,ty). (65)

Going back to the unequal time correlation function we can
integrate Eq(54),

t

Q) - o<q>])f<q,t2>

tp

f(g,ty,ty) = ex;(

= R(tl, tz) e_o(q)(tl_tz)f(q,tz)

= R(ty, to)R(ty, to) e 0@ Ut 20f(q,t),  (66)

where we have usel(t;,t,) =R(t1,ty)/R(t,,t). We obtain a
complete solution once one does the integralltort,). No-
tice that these results are independent of the specific form for

So(®).

V. EVALUATION OF VORTEX VELOCITY PROBABILITY
DISTRIBUTION

The vortex velocity probability distribution function de-
fined by

NoP(V,t) = (n(1)a(V - v(1))), (67)

wherev as a function of the order parameter is given by Eq.
(12) with ¢ replaced bym, n(1)=8m(1))|D(m(1))| is the
unsigned defect density, anuh(1)=(n(1)). We notice in
evaluatingP(V ,t) that it is of thedefect sector formthus
there is a defect locating function in the average via the
factor of n(1). Our results from Sec. Il suggest that in this
sector we can treat the fielch as Gaussian with variance
given by G(12) calculated in Sec. lll.

In carrying out the average we need the auxiliary quantity

W(£b) = (sm)[] 8¢, -v,m,)sb-K)), (68

whereK(l):é(l)m(l). Then
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WPV .0 = [ ol ag D@l -vib.HWED),
LV

(69)
wherev(b, &) =J(b, & /D(&) with

D(§) = (70

€
| :“1 K2k

Vn
&

V1 gv2 .
V1,V oV g"lgﬂ“Z

and

Ja(0,8) = m_—l)!éa,/tzw-wﬂn's”r”zv--'an”lglytzz o 5;?1
(71)

Let us turn to the Gaussian average determinid@,b).
Following the analysis used to evaluag in Sec. Illl we
introduce the integral representation for thefunction to

obtain
i [ 2 2511 5 eesinan
(72)
where
I'(k,q,s) = (gkmDgakDgs,V,m, Dy (73)
If we introduce
H.(1) =ik, +q,0(1) +s:V'M]5(11) (74)
then we can write
r(k,q,9) = (Omb) = exp[%Ha(BHa@)Gu_z) ,
(75)

whereG(12) was determined in Sec. Ill. We assume that
the cross terms involving an odd number of gradients van
ishes in the argument of the exponential. We have then

I'(k.q,8) = EXL{— %[kzso(l) + 2k - (1) + 9°Sop(2)

+ s;szsf(l)]} : (76)
where
S _ [ dg oo 1@
s ) @on O(a)f(q,t) =Q(1) = 21D (77)
where we have used E¢4),
S2(1) _  d'g o2 (1)
S0 ) @ O(g)f(q,t) = 410 (78)

having used Eq(65), and

PHYSICAL REVIEW EG69, 056110(2004

S(z) (1) B 2)( )

The next step in extracting/ is to integrate ovek:

dnk 1 _ 2c _ @ ocs(Z)
ra.s =f G | K9 = g TR,
(80)
where
g: %2 - § (81)
Using Eq.(80) back in Eq.(72) we obtain
d'q s/ \ _.. = aw
W(£,b) :f w(r{f 57/: )e ibag '%Sul“(q,s)
_ -ib-q —|§”s”
(ZW)“(HJ ) "2 So)”’2
Xe—(l/z)qzs (1/2)szszs‘,f' (82)
This factorizes into a product of three natural parts,
1
W(¢,b) = (ZW—S())WW(g)W(b)’ (83
where
dSV v _V o o
W(g) — (HJ ?M ) —I.f S —(1/2 S#S#S(Mz) (84)
v ™
and
d" . »
W(b) = f (zqg‘ne"b“e‘“’”qz? (85)
Using the basic integral
) f sxe—|yx (a/2) 1 — @ y2/2a (86)
T \27Ta
we can evaluate both factors:
1 n/2 (2)
W(e) = (H W) e (6.2, (87)
p Ty
W(b) = ———e™"25, (89)
(2773)”’2

Turning tonyP(V ,t) given by Eq.(69), we see that we have

the integral oveb of the form
Jp= f d" &(V - v(b,§))W(b)
= f d"b f A2 ivgnv o) (89)
(2m)" '

We can then write-v(b, ¢&)=a-b where
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l V- v,
aVl = D(n _ l)' Zaea,,uz,. . .,,unevl,vz,. S ,,,22 Tt gf’“n (90)
then
J d"b f —|V -z |ab 1_ e—b2/2§
(277)“ (27TS)n/2
d"z
e—IV ze—(SIZ)a 91
WhereazzzaMaBzB and the matrixM is given by
—_ 1 VZ Vn
ap™ DZ[(n _ 1)|]2 Ea,,uz,. . .,p,nev,vz,. - aSiy e gf’“n
’ ’ ’ ’ Vé . Vr’]
X GB,,LLZ,. . .,,u,nGV,VZ,. . "Vngﬂé g"“r: (92)

Doing the remaining Gaussianintegration in Eq.(91) we
obtain

1 1 1
Jy=—— —exp{— => V“[M‘l]ﬂ,yvv]

(2m9"2 VdetM 2Su.v
(93)
and
1
)= dé, —
NoP(V. 1) J H §M|D<§>|W(g)(4 5.5 deM
Xexpl - i_E V"[M‘l]#’VV”] . (94)
Su.v

We must look at the matrid and its inverse. First mul-
tiply M,z by £, to obtain

V2 ... &Vn
'Vngﬂ-z §/-’-n

v — v 1
gaMa,B - gamea,,uz,. . .,,unevl,vz,. ..

r ’ ’ ’ V2 . Vn
X E,B,/.LZ,. . .,,unevl,vz,. . "Vngll-é gﬂ-r,] . (95)
However,
gp,le,u.l,p,z,. . .,,u,ngﬂzz o glur:] = D(f) 61/,1/2,. SV (96)
then
gaM af = Wp(g) ev,vz,. . .,vnevl,vz,. . .,vneﬁ,,ué,. . "'ur/1
R C
X Evl,vz,. . "Vngll-é g'“rq (97)
=1 2. 08
_D(n— 1), E,B,,ué,...,,tl,r’]ev,vé,...,Vr'lgﬁé gf‘r’m’ ( )
where we have used
eV,VZ ..... VneVlvVZ ..... n = 51/,1/1(” - l) I, (99)

Multiply Eqg. (98) by £, to obtain

PHYSICAL REVIEW E 69, 056110(2004)

l ’ ’
Vv _ v , , , , V2 .. én
gygaM 7. D(n _ 1)| gyeﬁ,,uz,. . .,,anGV,VZ,. . "Vngl-’«é g"“r,1
pe— 1 -
T D(n- 1) EB,#Q,---,M,QD(g)E%Mé,---,#,Q = Oyp.
(100
Thus we have the beautiful result:
(M™) 5= > £ (10D)
We need deM=1/detM™1. We have
detM™*= & & 6”15”25 gD
“nl Cayag, g By o - BySa 5B, S0y B,
_ 1
- Eevl, Vo .,VnD(g) Evl,vz,. . .,VnD(g)
1 2 2
= HD@ n! =D(é&-. (102

Using the clean result dé#l)=1/(D)?, and Eq.(101), we
have

12406

_ dé, )
ngP(V,t) = f (ll:ly Tn §M2))>(4ﬂ.2%§)n/ze (112
(103
where
1
Ag) =2 @(5}’)2 2 VEEENVP. (104)
MV = Sa.B,v

Next make the change of variablé§= \/S(_z%“ to obtain,
D(H=(11, \S?)D(D),

nOP(V,t):H(—S(L)f@'[ d§ )DZ(f)e—(lm)A )
i \2m/gs) / Vv V2m

(105
where
AD =2 &7+ 2 VgV (106
M,V a,B,v
and
~ /S?
Vé= [ ==V (107
S
Next we make the transformation fro?ﬁj to x,, via
€= N pxs (108)

such that

056110-7



GENE F. MAZENKO

AD=2 (x

a,v

2 - v v
0= 2N, N XX
MV

+ % Ve NQMXMNHMZXMZVB (109
This requires thaN satisfy
Ny, Ny, * VNG VNG L = 8 - (110
This has a solution given by
N, ,=5,,+ (—1 1)(/“\7B (111
af — YapB — .
V1 +V2

We then need the Jacobian of the transformadéipe dx,,
andD(¥) evaluated in terms of. Look first atD(§),

(f) - _I ayay Evlvz Vn

V1 /21, P1\/H
X [Xas + N Vix g V]
X[X22 + NV 2V2] -« [in + NyVeny i V).
(112

If we multiply this out in powers of/ we see that if we have

more than one factor o¥% then the contribution vanishes

due to antisymmetry, therefore

DH=D()+~n N 5T
- X n! ealaz---anevlvz---v X Xa2 Xan
(113
which can be put in the form
D(x)
D(g) = . (114
V1+ V
Next we need the Jacobian
(7~V
3=11 de< _@) (115
v (?XM’
=[dets, . + N;VEVE)]" = (3p)", (116)
where
Jp=dets, , + N VA (117
1 N V 1V'81
= 1 Cenay €18y By [0uy.8, t N1 ]
X[8,,p,+ NIVOVEZ] - [5, 5 +NVeVES]. (118)

Again, expanding this out in powers ot only the first two
terms contribute due to symmetry and we have
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1,

— Ve ~B
Jo= - €ayaya, t N1 €0y 0, €8y ary -V VL
=5 1
=1+N,Ve= —, (119
V1+V?

Going back to Eq(105 we have

s? 1
nOP[V,t]:H< £ — J, (120
w \ 27/ (1 +V2) 272
where we have the final integral
J [T e p2 e w2min, (121)
o N 27

We can evaluatdg directly. The first step is to write

d v
= [ T1 22
wy N2

R TR T TATIA
2 (1) (n) -(1/2)
XXX XX X ( E(Xﬂ :

(122

This factorizes into a product of integrals for fixed
d)( (1))2
& (1) 1) ~(1/2) )
Ir= €y u, Eupply ,unf H X,ul “1 2
x H d_.(ui (2112 Y] (22
N2 X’ulx'“le u o

() (Mem(1/2) ) ()7
Xuy X, my u

%,

Each integral in the product is equal to 1 except for those
giving a é function with unit coefficient:

Jr= euluz"',uneui,ué'"M,;‘Sulvui‘suzyué o 5Mn,.ur’] = Eilug' N X
(123
We have then
s? 1
noP[V,t]=n! H & 24)
277_‘/ S (1 +V2)(n+2)/2

SinceP(V,1) is normalized to 1, we find on integration over
V the result

! s?
N = n H
2n/21-(n + ) %
2

which agrees with previous results in the isotropic limit.
Eliminating ng in Eq. (124) we obtain the final result for the
VVPDF:

(129
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F(g+1>
P[V,t]= T(H

whereV, =V, /v,,

1 1 E:zZ(—"—C )2. (136)
:)— (126) S 7 \h®
U

W) (1 +'\"/2)(n+2)/2 ’

and from Eq.(129

sS2(1) dq 1
— e 2f(aty) = ——. (137
s . s ) o W T
v,= o
g é:) Putting these results back into E§27) we find the scaling
using Eqs.(77), (78), and(81) we have velocity for a simple anisotropic system is given by
2
— 1] I &= =
5= SOZ[I - (u) } azg =203 (1) 39
while Eq. (79) gives R <#>2 139
2_o 1 9" 5 0@ S o \hy+dc,(t - to)
SU =Sy | Hoade Y a ) (129
(2m) In the large time limit we have
with | defined by Eq.(51): de
e=—£ (140

d v, =
! =f ((zj_qr*e_zo(q““")f(q,to)- (130 hoat

g o and the final form is a simple generalization of the isotropic
The needed input to determine the average vortex spged  result.
the functionO(q), the Fourier transform of the operator de-
fined by Eq.(3), and the initial conditiorf(q,tp). This result
for P[V,t] is the anisotropic generalization of E(.). For
the set of models included here the velocity tail exponent is Let us look at the COP case whe@q)=-g?+q*. We

VII. CONSERVED ORDER PARAMETER CASE

(n+2) independent of direction. choose the rather general initial condition
h dr2 )
VI. ANISOTROPIC CASE f(g,0) = (2_> g (2’ (141
a
As a particularly simple example, suppose that we have o o N )
the choice in the governing Langevin equation which satisfies the normalization condition given by Eq.
A (58). We then need to evaluate the integrahd the numera-
O(L)y(1) = - X e, Vi (D), (13D  torin Eq.(129:
“ ddq q2 » 4f h d/i2 ) 2 J
i i J= __eZt(q - e—(h/2)q —-_ _hd/2_ h—d/2| ]
or, in terms of Fourier transforms, (2mid . q ah( )
0(a) = 2 c,0;. (132 (142

] ) - o ~ We see that all of the ingredients contributingitocan be
The associated vortex-velocity probability distribution is expressed in terms ¢fand its derivatives. We see thacan
given by Eq.(126) and we need to work out the average pe written in the form

vortex speed given by Eq127). Assuming the initial con-
dition | :Tohdlzj dqu_lez(qz_q4)t_(h/2)q2, (143
f(q,0) = (H (2wha)1’2)e-<1’2>hMQi, (133 0

WhereTo is a constant which depends drand cancels when
we have from Eq(130 we take ratios. Changing integration variablesxtog® we

find
n 1/2
I(t)=f d qn (H(tha)1/2>e—(1/2)hlu(t)qi:H( h, ) , )
@ |, « \ha(t) =Ty qoprrigofi (14
(139 0
where whereT(’):Tolz. The leading large time dependence can be
_ _ extracted from the integral by completing the square in the
Na(V) =, + 4C,(t=To), (139 argument of the exponential or using the stationary phase
from Eq. (128 method. We find, to leading order in large
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b dr2-1 T
) _ed)z’
2t

=i

whereb=1-h/4t, ¢?=(t/2)b% From this result fol we see
that | =wl where

5
—-1
2
Going further we havé=w?l + &l which leads easily to the
useful result

(149

b

b

w=

1.1 +0O(t7?). (146

1
i

2t

(147)

Turning to the evaluation af given by Eq.(142), using Eg.
(d/2-1)

(145), we find
@ i

Working to leading order in time we find=1/2d. Putting all
of this together in Eq(127),

S

_ J¢
©2dt

+ 2¢£ (148

© _
-
since, from Eq(146), @=1/2t?+O(t"3). The final result for

d

2
V.=
t2

(149

v? is independent of the initial conditions. We see that the

PHYSICAL REVIEW EG69, 056110(2004

—
Ucop __

—- I

(150

\

Uncop

The computation ob, using Eq.(127) has been checked
numerically in the simplesh=d=2 case wherd can be
evaluated explicitly in terms of an erfc function.

VIIl. CONCLUSIONS

We have presented here the detailed calculation of the
VVPDF including the time dependent vortex scaling velocity
v, for a class of models beyond the original nonconserved
TDGL models. The class of models studied includes the con-
served TDGL model and certain anisotropic models. In the
conserved case it is found that the average vortex speed falls
off ast™ compared to the NCOP case where-t™'/2 It is
our intension to numerically test the predictions for the COP
case.

We see that there is self-consistent confirmation that in
dealing with vortex velocities one can organize things in
terms of averages over an auxiliary Gaussian field. We re-
quire self-consistently that this field and the order parameter
field share the same zeros. A similar development can be
worked out for string defectgs,6].

ACKNOWLEDGMENTS

COP average vortex speed is qualitatively slower than the This work was supported by the National Science Foun-

NCOP case:

dation under Contract No. DMR-0099324.

[1] H. Qian and G. F. Mazenko, Phys. Rev.@B, 021109(2003).

[2] G. F. Mazenko, Phys. Rev. Let?8, 401(1997.

[3] B. Yurke, A. N. Pargellis, T. Kovacs, and D. A. Huse, Phys.
Rev. E 47, 1525(1993.

[4] A. N. Pargellis, P. Finn, J. W. Goodby, P. Pannizza, B. Yurke,

and P. E. Cladis, Phys. Rev. A6, 7765(1992.

[5] G. F. Mazenko and R. A. Wickham, Phys. Rev.5, 2539
(1998.

[6] G. F. Mazenko, Phys. Rev. B9, 1574(1999.

056110-10



