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The calculation of the point vortex velocity probability distribution function(VVPDF) is extended to a larger
class of systems beyond the nonconserved time-dependent Ginzburg-Landau(TDGL) model treated earlier.
The range is extended to include certain anisotropic models and the conserved order parameter case. The
VVPDF still satisfies scaling with large velocity tails as for the nonconserved isotropic case. It is shown that
the average vortex speed can be self-consistently expressed in terms of correlation functions associated with a
Gaussian auxiliary field. In the conserved order parameter case the average vortex speed decays ast−1 com-
pared to thet−1/2 decay for the nonconserved case.
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I. INTRODUCTION

In recent work [1] it was shown that the theoretically
predicted[2] velocity probability distribution for point vorti-
ces in the case of a phase-ordering system agrees very well
with direct numerical simulations. In particular the predicted
high velocity algebraic tail is found to be robust and the
predicted exponent confirmed. In the original paper[2] de-
scribing the theory there were assumptions concerning the
Gaussian nature of an underlying auxiliary field. Here we
clarify this result by showing that the assumption of an un-
derlying Gaussian field is consistent and does not imply that
the underlying order parameter field is Gaussian. We only
require that the order parameter field and the auxiliary field
share the same zeros and symmetry. The theory is also ex-
tended here to conserved and anisotropic systems of coars-
ening point defects.

In Ref. [2] it was shown for a nonconserved time-
dependent Ginzburg-Landau(TDGL) model that for annihi-
lating point defectsn=d, wheren is the number of compo-
nents of the order parameter andd the spatial dimensionality
of the system, that the vortex velocity probability distribution
function (VVPDF), the probability that a given vortex has
the velocityV at time t after a quench, is given by

PsV,td =

GSn

2
+ 1D

fpv̄2stdgn/2

1

s1 + V2/v̄2stddsn+2d/2 , s1d

where the parameterv̄std is clearly related to the average
vortex speed and varies ast−1/2 for long times for the non-
conserved TDGL model. Both the form ofPsV ,td and the
time dependence ofv̄std have been confirmed in Ref.f1g for
the casen=d=2. It is worth pointing out that the order pa-
rameter growth lawLstd for the system studied in Ref.f1g
has a log correctionf3,4g, L2< t / ln t. This log correction
for Lstd is seen in the simulations in Ref.f1g. There are no
log corrections found forv̄std. Thus nonlinearities which
influenceL are not seen inv̄std. We discuss in more detail
here the derivation of the result given by Eq.s1d and its
extension to systems with a conserved order parameter
and simple spatial anisotropy. In the end we find that the

VVPDF still satisfies a form similar to Eq.s1d with the
same large velocity tail, but the average vortex speed falls
off as t−1 in the conserved case compared to thet−1/2 be-
havior found for the nonconserved case.

The set of problems of interest here are driven by Lange-
vin equations of the form

] ca

] t
= Kascd, s2d

where we assume

lim
c→0

Kascd = − Ôca, s3d

and the right-hand side is linear inc. The key idea is that we
are interested in that part of the equation of motion which
corresponds to the motion of vortex cores which are charac-
terized by zeros of the order parameter. An important ex-
ample is the TDGL model which is of the form

] ca

] t
= − ĜfVa8scd − c¹2cag, s4d

wherec.0, Ĝ is a constant for a nonconserved order param-

eter sNCOPd and Ĝ=−D¹2 for a conserved order parameter
sCOPd. Comparing Eqs.s4d and s3d we have

ÔNCOPs1d = − Gc¹1
2 s5d

and

ÔCOPs1d = D¹1
2f− r + c¹1

2g s6d

for the COP case. Herer =V9scduc=0 and r ,0 if the system
is unstable. Through a proper choice of length and time
scales we can choose

ÔNCOPs1d = − ¹1
2, s7d

ÔCOPs1d = ¹1
2f1 + ¹1

2g. s8d

An anisotropic model can be assumed to be of the form
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ÔANI = − o
m1

cm1
¹m1

2 + o
m1,m2

bm1,m2
¹m1

2 ¹m2

2 , s9d

wherecm1
andbm1,m2

are constants. This reduces to the COP
case ifcm1

=−1 andbm1,m2
=1.

There is the underlying assumption that the nonlinear po-
tential contribution in the equation of motion must be such
that system orders via annihilating point defects.

II. DEFECT DENSITIES AND CONTINUITY EQUATION

We assume that the instantaneous positions of these de-
fects are determined by the zeros of the order parameter
field. Furthermore, it was pointed out in Ref.[2], that the
vortex charge density for this system can be written asr

=dscW dD where D is the Jacobian(determinant) for the
change of variables from the set of vortex positionsr istd
(wherecW vanishes) to the fieldcW :

D =
1

n!
em1,m2,. . .,mn

en1,n2,. . .,nn
¹m1

cn1
¹m2

cn2
¯ ¹mn

cnn
,

s10d

where em1,m2,. . .,mn
is the n-dimensional fully antisymmetric

tensor and summation over repeated indices here and below
is implied. Furthermore, since topological charge is con-
served, it was shown in Ref.f2g that r satisfies a continuity
equation:

] r

] t
= − ¹W · srvd, s11d

where the vortex velocity is given by

Dvb = −
1

sn − 1d!
eb,m2,. . .,mn

en1,n2,. . .,nn
sÔcn1

d¹m2
cn2

¯ ¹mn
cnn

.

s12d

It is assumed that the velocity field is used inside expressions
multiplied by the vortex locatingd function so we can use
Eq. s3d in Eq. s12d. These results are rather general.

Notice that r and v have certain important invariance
properties. If we can write

cns1d = fa + bm2s1d + ¯gmns1d s13d

for small mn and wherea andb are constants, it is easy to

see thatrscW d=rsmW d. If we further assume, asmW andcW go to
zero,

Ôcns1d = aÔmns1d, s14d

then

vmscW d = vmsmW d. s15d

If Ô corresponds to an operator with two gradients, as in the
NCOP TDGL model, then, assuming Eq.s13d to be valid,

Eq. s14d follows. In the case whereÔ has higher-order de-
rivatives and we assume that Eq.s14d holds, then Eq.s13d
must be modified.

Thus the correlation function we compute in the next sec-
tion, Gs12d, is for that set of fieldsm, related toc by Eq.
(13), for small values ofmn andcn, which is described by a
Gaussian distribution. Thus we assume there is a fieldmn

which is Gaussian while the statistics ofcn are largely un-
determined.

III. CORRELATIONS FOR THE DEFECT SECTOR

We show in Sec. IV that in determining the average vor-
tex speed we need certain correlation functions for the aux-
iliary field m, introduced in the last section. We show here
that we can use the defect continuity equation(11) to show
that there is a self-consistent solution for anm field that is
Gaussian. Furthermore, we determine the correlation func-
tions needed to evaluate the average vortex speed explicitly.
The method we develop here is a generalization of the ap-
proach due to Mazenko and Wickham[5].

The idea is to look at the equation generated by multiply-
ing the continuity equation by a source function and then
averaging overm. We have

kf] rs1d ] t1 + ¹W s1d · „rs1dvs1d…gSsHdl = 0, s16d

whereSsHd=expfed1̄Hs1̄d ·ms1̄dg. The question is whether
this equation can be satisfied for an underlying Gaussian
probability distribution for arbitrary external fieldHs1d.

To answer this question we evaluate first the quantity

krs1dSsHdl = kSsHdds1dDs1dl, s17d

where we introduce the simplifying notationds1d=d(ms1d)
and nowD is a function of the fieldm. When we talk about
correlation in the defect sector we mean averages like in Eq.
s17d where there is a vortex locatingd function inside the
average.

By taking functional derivatives we are able to generate
the correlations between fieldsm at arbitrary space-time
points with the field at the space-time point 1. If we define

ZHs1d = kSsHdds1dl s18d

then

kds1dmn2
s2dmn3

s3d¯l = ZH
−1s1d

d

dHn2
s2d

d

dHn3
s3d

¯ ZHs1d.

s19d

In our development a key property of the underlying Gauss-
ian distribution function is

kmn1
s1dAl = o

n18

E d1̄Gn1n18
s11̄dK d

dmn18
s1̄d

AL
for arbitraryA. For A=mn2

s2d we obtain

kmn1
s1dmn2

s2dl = Gn1n2
s12d. s20d

If we assume that the system is isotropic in the vector space,
thenGn1n2

s12d=dn1n2
Gs12d and
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kmn1
s1dAl =E d1̄Gs11̄d K d

dmn1
s1̄d

AL . s21d

We then need to work out

kSsHdrs1dl =KSsHdds1d
1

n!
em1,m2,. . .,mn

en1,n2,. . .,nn

3¹m1
mn1

¹m2
mn2

¯ ¹mn
mnnL . s22d

Using Eq.s21d we have

kSsHdrs1dl =
1

n!
em1,m2,. . .,mn

en1,n2,. . .,nn
¹m1

Gs11̄d

3K d

dmn1
s1̄d

sSsHdds1d¹m2
mn2

¯ ¹mn
mnn

dL .

s23d

The derivative ofSsHd leads to the introduction of the quan-
tity

An1
s1d =E d1̄Gs11̄dHn1

s1̄d. s24d

We assume, and check self-consistently, that

(¹m1
Gs11̄d)u1=1̄=0. The derivatives of the product

¹m2
mn2

¯¹mn
mnn

with respect tomn1
s1̄d lead to contributions

which all vanish because it picks out termsdn1n j
which mul-

tiplies en1,n2,.,n j,.,nn
anden1,n2,.,n1,.,nn

=0. We have then

kSsHdrs1dl =
1

n!
em1,m2,. . .,mn

en1,n2,. . .,nn
¹m1

An1
s1d

3kSsHdds1d¹m2
mn2

¯ ¹mn
mnn

l. s25d

Clearly we can go through this processn−1 more times to
obtain kSsHdrs1dl=DAs1dZHs1d where

DAs1d =
1

n!
em1,m2,. . .,mn

en1,n2,. . .,nn
¹m1

An1
s1d

3¹m2
An2

s1d ¯ ¹mn
Ann

s1d. s26d

Next we look at the current contributions to Eq.(16) in
the form

kSsHd¹W · „rs1dvs1d…l

= − ¹m1

s1d 1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn

3kSsHdds1dṁn1
¹m2

mn2
¯ ¹mn

mnn
l. s27d

We assume that

ds1dṁn1
s1d = − ds1dÔs1dmn1

s1d, s28d

where Ôs1d is a derivative operator defined by Eq.s3d. In

Ref. f2g one has the choiceÔs1d=−¹1
2. After inserting Eq.

s28d back into Eq.s27d and using Eq.s21d we obtain

kSsHd¹W · srs1dvs1ddl

= − ¹m1

s1d 1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn
f„− Ôs1dAn1

s1d…

3¹m2
An2

s1d ¯ ¹mn
Ann

s1dZHs1d + „− Ôs1dGs11̄d…1=1̄

3kSsHddn1
s1d¹m2

mn2
¯ ¹mn

mnn
lg, s29d

wheredn1
s1d=f] /]mn1

s1dgdsms1dd and the derivatives of the
product of m’s vanish as in the previous case. Clearly the
reduction of the term containingdn1

s1d follows just as for
kSsHdrs1dl with the result:

kSsHd¹W · srs1dvs1ddl = ¹m1

s1d 1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn

3 f„Ôs1dAn1
s1d…¹m2

An2
s1d ¯ ¹mn

3Ann
s1dZHs1d + sÔs1dGs11̄dd1=1̄¹m2

3An2
s1d ¯ ¹mn

Ann
s1dkSsHddn1

s1dlg.

s30d

We must next evaluateZHs1d and the related quantity
kSsHddn1

s1dl. Determination ofZHs1d involves evaluation of
the Gaussian average,

ZHs1d = kdsms1ddSsHdl =E ddk

s2pddkeik·ms1deHs1̄d·ms1̄dl,

s31d

with the result

ZHs1d =
e−s1/2dfA2s1d/S0s1dg

„2pS0s1d…n/2 expF1

2
Hn1

s1̄dHn1
s2̄dGs1̄2̄dG ,

s32d

whereS0s1d=Gs11d. Next we need

kSsHddn1
s1dl =E ddk

s2pddikn1
keik·ms1deHs1̄d·ms1̄dl

=E ddk

s2pdd ikn1
expF−

1

2
k2Gs11d + ik ·As1d

+
1

2
Hn2

s1̄dHn2
s2̄dGs1̄2̄dG

= expF1

2
Hn1

s1̄dHn1
s2̄dGs1̄2̄dG ]

] An1
s1d

3expF−
1

2
Hn1

s1̄dHn1
s2̄dGs1̄2̄dGZHs1d

= −
An1

s1d

S0s1d
ZHs1d. s33d
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Putting Eqs.s32d and s33d back into Eq.s30d and allowing
the gradient¹m1

s1d to act gives

kSsHd¹W · srs1dvs1ddl = − DBs1dZHs1d − Dm1

B s1d¹m1

s1dZHs1d,

s34d

where

DBs1d =
1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn

3¹m1
Bn1

s1d¹m2
An2

s1d ¯ ¹mn
Ann

s1d, s35d

and

Dm1

B s1d =
1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn
Bn1

s1d

3¹m2
An2

s1d ¯ ¹mn
Ann

s1d. s36d

Bn1
s1d = „− Ôs1d + Vs1d…An1

s1d s37d

and

Vs1d =
1

S0s1d
sÔs1dGs12dd1=2. s38d

Putting the results together in Eq.s16d we obtain

]

] t1
sDAs1dZHs1dd = DBs1dZHs1d + Dm1

B s1d¹m1

s1dZHs1d.

s39d

We can write this in the form

] DAs1d
] t1

+ DAs1d
]

] t1
ln ZHs1d = DBs1d + Dm1

B s1d¹m1
ln ZHs1d.

s40d

After taking the derivativesZHs1d, we can then write Eq.
s40d in the form

W2s1d = W4s1d, s41d

where

W2s1d =
] DAs1d

] t1
− DAs1d

n

2

Ṡ0s1d
S0s1d

− DBs1d s42d

and

W4s1d = DAs1dS As1d
S0s1d

· Ȧs1d −
1

2
A2s1d

Ṡ0s1d
S0

2s1d
D

− Dm1

B s1d
As1d
S0s1d

·¹m1
As1d. s43d

Look first at W2s1d which can be written in the form

W2s1d =
1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn

3 ¹m1
SȦn1

s1d −
1

2

Ṡ0s1d
S0s1d

An1
s1d − Bn1

s1dD
3¹m2

An2
s1d ¯ ¹mn

Ann
s1d

=
1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn

3¹m1
gn1

s1d¹m2
An2

s1d ¯ ¹mn
Ann

s1d, s44d

where

gn1
s1d = Ȧn1

s1d −
1

2

Ṡ0s1d
S0s1d

An1
s1d − Bn1

s1d. s45d

In looking atW4 we need to focus on the quantity

Dm1

B s1dAns1d¹m1
Ans1d

=
1

sn − 1d!
em1,m2,. . .,mn

en1,n2,. . .,nn
Bn1

s1d

3¹m2
An2

s1d ¯ ¹mn
Ann

s1dAns1d¹m1
Ans1d. s46d

Note that

em1,m2,. . .,mn
¹m1

Ans1d¹m2
An2

s1d ¯ ¹mn
Ann

s1d = en,n2,. . .,nn
DAs1d.

s47d

Putting this back into Eq.s46d, we find

Dm1

B s1dAns1d¹m1
Ans1d

=
1

sn − 1d!
en1,n2,. . .,nn

en,n2,. . .,nn
Bn1

s1dAns1dDAs1d

= Bn1
s1dAn1

s1dDAs1d s48d

and

W4s1d = DAs1d
Ans1d
S0s1d

SȦn1
s1d −

1

2

Ṡ0s1d
S0s1d

An1
s1d − Bn1

s1dD
= DAs1d

Ans1d
S0s1d

gns1d. s49d

Using Eqs.s44d and s49d in Eq. s41d we find a solution for
generalH if

gns1d = Ȧns1d −
1

2

Ṡ0s1d
S0s1d

Ans1d − Bns1d = 0. s50d

This will hold for all source fieldsH if

GENE F. MAZENKO PHYSICAL REVIEW E69, 056110(2004)

056110-4



]

] t1
Gs12d −

1

2

Ṡ0s1d
S0s1d

Gs12d = f− Ôs1d + Vs1dgGs12d.

s51d

Thus the average of the continuity equations16d is satisfied
by a Gaussian probability distribution if the associated vari-
anceGs12d satisfies Eq.s51d.

IV. SOLUTION FOR G„12…

We can solve Eq.(51) for Gs12d in some generality. The
first step is to write

Gs12d = ÎS0s1dS0s2dfs12d, s52d

whereS0s1d=Gs11d. Inserting this form into Eq.s51d gives

]

] t1
fs12d = f− Ôs1d + Vs1dgfs12d. s53d

We assume that the system is translationally invariant and on

Fourier transformation the operatorÔs1d is diagonalizedand
time independent. We have then

]

] t1
fsq,t1,t2d = f− Osqd + Vs1dgfsq,t1,t2d. s54d

We see thatVs1d, defined by Eq.s38d, is determined by the
constraint

Vs1d =E ddq

s2pdd Osqdfsq,t1,t1d. s55d

We also have the equation

]

] t2
fsq,t1,t2d = f− Osqd + Vs2dgfsq,t1,t2d. s56d

Adding Eqs.s54d ands56d and settingt1= t2= t we obtain for
the equal-time correlation functionfsq,td; fsq,t ,td:

]

] t
fsq,td = 2f− Osqd + Vs2dgfsq,td. s57d

For equal times we have from Eq.s52d that fs11d=1 or

1 =E ddq

s2pdd fsq,td. s58d

The partial solution for Eq.s57d is given by

fsq,td = expS2E
t0

t

dtfVstd − Osqdg D fsq,t0d

= R2st,t0de−2Osqdst−t0dfsq,t0d, s59d

where

Rst1,t2d = expSE
t2

t1
dt Vstd D . s60d

We then need to solve forVstd. Inserting Eq.(59) into Eq.
(58) gives

1 = R2st,t0dIst,t0d, s61d

where

Ist,t0d =E ddq

s2pdd e−2Osqdst−t0dfsq,t0d. s62d

We then have from Eq.s61d

R2st,t0d = I−1st,t0d. s63d

The constraint condition, Eq.s55d, is given by

Vstd = R2st,t0dE ddq

s2pddOsqde−2Osqdst−t0dfsq,t0d = −
1

2

İst,t0d
Ist,t0d

.

s64d

Thus the determination ofVs1d is reduced to evaluation of
the integralIst ,t0d. The equal time correlation function is
given then by

fsq,td = I−1st,t0de−2Osqdst−t0dfsq,t0d. s65d

Going back to the unequal time correlation function we can
integrate Eq.s54d,

fsq,t1,t2d = expSE
t2

t1
dtfVstd − OsqdgD fsq,t2d

= Rst1,t2de−Osqdst1−t2dfsq,t2d

= Rst1,t0dRst2,t0de−Osqdst1+t2−2t0dfsq,t0d, s66d

where we have usedRst1,t2d=Rst1,t0d /Rst2,t0d. We obtain a
complete solution once one does the integral forIst ,t0d. No-
tice that these results are independent of the specific form for
S0std.

V. EVALUATION OF VORTEX VELOCITY PROBABILITY
DISTRIBUTION

The vortex velocity probability distribution function de-
fined by

n0PsV,td ; kns1dd„V − vs1d…l, s67d

wherev as a function of the order parameter is given by Eq.

s12d with cW replaced bymW , ns1d=dsms1dduDsms1ddu is the
unsigned defect density, andn0s1d=kns1dl. We notice in
evaluatingPsV ,td that it is of thedefect sector form, thus
there is a defect locatingd function in the average via the
factor of ns1d. Our results from Sec. II suggest that in this
sector we can treat the fieldm as Gaussian with variance
given byGs12d calculated in Sec. III.

In carrying out the average we need the auxiliary quantity

Wsj,bd = kdsmdp
m,n

dsjm
n − ¹mmnddsb − K dl, s68d

whereK s1d=Ôs1dms1d. Then
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n0PsV,td =E dnbp
m,n

djm
n uDsjdudsV − vsb,jddWsj,bd,

s69d

wherevsb ,jd=Jsb ,jd /Dsjd with

Dsjd =
1

n!
em1,m2,. . .,mn

en1,n2,. . .,nn
jm1

n1jm2

n2
¯ jmn

nn s70d

and

Jasb,jd =
1

sn − 1d!
ea,m2,. . .,mn

en1,n2,. . .,nn
bn1

jm2

n2
¯ jmn

nn .

s71d

Let us turn to the Gaussian average determiningWsj ,bd.
Following the analysis used to evaluateZH in Sec. IIII we
introduce the integral representation for thed function to
obtain

Wsj,bd =E dnk

s2pdn

dnq

s2pdnSp
m,n
E dsm

n

2p
De−ib·qe−ijm

n sm
n
Gsk,q,sd,

s72d

where

Gsk,q,sd = keik·ms1deiq·K s1deism
n ¹mmns1dl. s73d

If we introduce

Has1̄d = ifka + qaÔs1d + sm
a¹m

s1dgds1̄1d s74d

then we can write

Gsk,q,sd = keHas1̄dmas1̄dl = expF1

2
Has1̄dHas2̄dGs1̄2̄dG ,

s75d

whereGs12d was determined in Sec. III. We assume that
the cross terms involving an odd number of gradients van-
ishes in the argument of the exponential. We have then

Gsk,q,sd = expF−
1

2
fk2S0s1d + 2k ·qScs1d + q2SO2s1d

+ sm
asm

aSm
s2ds1dgG , s76d

where

Scs1d
S0s1d

=E dnq

s2pdn Osqdfsq,td = Vs1d = −
1

2

İs1d
Is1d

, s77d

where we have used Eq.s54d,

SO2s1d
S0s1d

=E dnq

s2pdn O2sqdfsq,td =
1

4

Ïs1d
Is1d

s78d

having used Eq.s65d, and

Smm8
s2d s1d

S0s1d
=E dnq

s2pdn qmqm8fsq,t1d = dmm8
Sm

s2ds1d
S0s1d

. s79d

The next step in extractingW is to integrate overk:

Gsq,sd =E dnk

s2pdn Gsk,q,sd =
1

s2pS0dn/2e−s1/2dq2S̄e−s1/2dsm
asm

aSm
s2d

,

s80d

where

S̄= SO2 −
Sc

2

S0
. s81d

Using Eq.s80d back in Eq.s72d we obtain

Wsj,bd =E dnq

s2pdnSp
m,n
E dsm

n

2p
De−ib·qe−ijm

n sm
n
Gsq,sd

=E dnq

s2pdnSp
m,n
E dsm

n

2p
De−ib·qe−ijm

n sm
n 1

s2pS0dn/2

3e−s1/2dq2S̄e−s1/2dsm
asm

aSm
s2d

. s82d

This factorizes into a product of three natural parts,

Wsj,bd =
1

s2pS0dn/2WsjdWsbd, s83d

where

Wsjd = Sp
m,n
E dsm

n

2p
De−ijm

n sm
n
e−s1/2dsm

asm
aSm

s2d
s84d

and

Wsbd =E dnq

s2pdne−ib·qe−s1/2dq2S̄. s85d

Using the basic integral

E dx

2p
e−iyxe−sa/2dx2

=
1

Î2pa
e−y2/2a s86d

we can evaluate both factors:

Wsjd = Sp
m

1

2pSm
s2dDn/2

e−sj
m8
n d2/2S

m8
s2d

, s87d

Wsbd =
1

s2pS̄dn/2
e−b2/2S̄. s88d

Turning ton0PsV ,td given by Eq.s69d, we see that we have
the integral overb of the form

Jb =E dnb d„V − vsb,jd…Wsbd

=E dnb E dnz

s2pdn e−iV•zeivsb,jd·zWsbd. s89d

We can then writez·vsb ,jd=a·b where

GENE F. MAZENKO PHYSICAL REVIEW E69, 056110(2004)

056110-6



an1
=

1

Dsn − 1d!
zaea,m2,. . .,mn

en1,n2,. . .,nn
jm2

n2
¯ jmn

nn s90d

then

Jb =E dnb E dnz

s2pdn e−iV·zeia·b 1

s2pS̄dn/2
e−b2/2S̄

=E dnz

s2pdn e−iV·ze−sS̄/2da2
, s91d

wherea2=zaMabzb and the matrixM is given by

Ma,b =
1

D2fsn − 1d!g2ea,m2,. . .,mn
en,n2,. . .,nn

jm2

n2
¯ jmn

nn

3eb,m28,. . .,mn8
en,n28,. . .,nn8

j
m28
n28

¯ j
mn8
nn8 . s92d

Doing the remaining Gaussianz integration in Eq.s91d we
obtain

Jb =
1

s2pS̄dn/2

1
Îdet M

expF−
1

2S̄
o
m,n

VmfM−1gm,nV
nG

s93d

and

n0PsV,td =E p
m,n

djm
n uDsjduWsjd

1

s4p2S0S̄dn/2

1
Îdet M

3expF−
1

2S̄
o
m,n

VmfM−1gm,nV
nG . s94d

We must look at the matrixM and its inverse. First mul-
tiply Mab by ja

n to obtain

ja
nMab = ja

n 1

D2fsn − 1d!g2ea,m2,. . .,mn
en1,n2,. . .,nn

jm2

n2
¯ jmn

nn

3eb,m28,. . .,mn8
en1,n28,. . .,nn8

j
m28
n28

¯ j
mn8
nn8 . s95d

However,

jm1

n em1,m2,. . .,mn
jm2

n2
¯ jmn

nn = Dsjden,n2,. . .,nn
s96d

then

ja
nMab =

1

D2fsn − 1d!g2Dsjden,n2,. . .,nn
en1,n2,. . .,nn

eb,m28,. . .,mn8

3en1,n28,. . .,nn8
j

m28
n28

¯ j
mn8
nn8 s97d

=
1

Dsn − 1d!
eb,m28,. . .,mn8

en,n28,. . .,nn8
j

m28
n28

¯ j
mn8
nn8 , s98d

where we have used

en,n2,...,nn
en1,n2,...,nn

= dn,n1
sn − 1d ! . s99d

Multiply Eq. s98d by jg
n to obtain

jg
nja

nMab =
1

Dsn − 1d!
jg

neb,m28,. . .,mn8
en,n28,. . .,nn8

j
m28
n28

¯ j
mn8
nn8

=
1

Dsn − 1d!
eb,m28,. . .,mn8

Dsjdeg,m28,. . .,mn8
= dgb.

s100d

Thus we have the beautiful result:

sM−1dab = o
n

ja
njb

n . s101d

We need detM =1/detM−1. We have

det M−1 =
1

n!
ea1,a2,. . .,an

eb1,b2,. . .,bn
ja1

n1jb1

n1ja2

n2jb2

n2
¯ jan

nnjbn

nn

=
1

n!
en1,n2,. . .,nn

Dsjden1,n2,. . .,nn
Dsjd

=
1

n!
Dsjd2n ! = Dsjd2. s102d

Using the clean result detsMd=1/sDd2, and Eq.s101d, we
have

n0PsV,td =E Sp
m,n

djm
n

Îs2pSm
s2dd

D D2sjd

s4p2S0S̄dn/2
e−s1/2dAsjd,

s103d

where

Asjd = o
m,n

1

Sm
s2d sjm

n d2 +
1

S̄
o

a,b,n
Vaja

njb
nVb. s104d

Next make the change of variablesjm
n =ÎSm

s2dj̃n
m to obtain,

Dsjd=spm
ÎSm

s2ddDsj̃d,

n0PsV,td = p
m
S Sm

s2d

2pÎS0S̄
D E Sp

m,n

dj̃n
m

Îs2pd
DD2sj̃de−s1/2dAsj̃d,

s105d

where

Asj̃d = o
m,n

sj̃n
md2 + o

a,b,n
Ṽaj̃a

n j̃b
nṼb s106d

and

Ṽa =ÎSa
s2d

S̄
Va. s107d

Next we make the transformation fromj̃n
a to xa

n via

j̃a
n = Na,bxb

n s108d

such that
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Asj̃d = o
a,n

sxa
nd2 = o

m,n
Nm,m̄1

Nm,m̄2
xm̄1

n xm̄2

n

+ o
a,b,n

ṼaNa,m̄1
xm̄1

n Nb,m̄2
xm̄2

n Ṽb. s109d

This requires thatN satisfy

Nm,m1
Nm,m2

+ ṼaNa,m1
ṼbNb,m2

= dm1,m2
. s110d

This has a solution given by

Nab = dab + S 1

Î1 + Ṽ2
− 1DV̂aV̂b. s111d

We then need the Jacobian of the transformationdjm
n →dxm

n

andDsj̃d evaluated in terms ofx. Look first atDsj̃d,

Dsj̃d =
1

n!
ea1a2¯an

en1n2¯nn
3 fxa1

n1 + N1Ṽ
a1xm̄1

n1Ṽm̄1g

3fxa2

n2 + N1Ṽ
a2xm̄2

n2Ṽm̄2g ¯ fxan

nn + N1Ṽ
anxm̄n

nnṼm̄ng.

s112d

If we multiply this out in powers ofṼ we see that if we have

more than one factor ofṼai then the contribution vanishes
due to antisymmetry, therefore

Dsj̃d = Dsxd +
1

n!
nea1a2¯an

en1n2¯nn
N1Ṽ

a1xm̄1

n1Ṽm̄1xa2

n2
¯ xan

nn

s113d

which can be put in the form

Dsj̃d =
Dsxd

Î1 + Ṽ2
. s114d

Next we need the Jacobian

J = p
n

detS ] j̃m
n

] xm8
n D s115d

=fdetsdm,m8 + N1Ṽ
mṼm8dgn = sJ0dn, s116d

where

J0 = detsdm,m8 + N1Ṽ
mṼm8d s117d

=
1

n!
ea1a2¯an

eb1b2¯bn
fda1,b1

+ N1Ṽ
a1Ṽb1g

3fda2,b2
+ N1Ṽ

a2Ṽb2g ¯ fda3,b3
+ N1Ṽ

a3Ṽb3g. s118d

Again, expanding this out in powers ofṼ, only the first two
terms contribute due to symmetry and we have

J0 =
1

n!
ea1a2¯an

2 + nN1ea1a2¯an
eb1a2¯an

Ṽa1Ṽb1

= 1 +N1Ṽ
2 =

1

Î1 + Ṽ2
. s119d

Going back to Eq.s105d we have

n0PfV,tg = p
m
S Sm

s2d

2pÎS0S̄
D 1

s1 + Ṽ2dsn+2d/2
JF, s120d

where we have the final integral

JF =E p
m,n

dxm
n

Î2p
D2sxde−s1/2dAsxd. s121d

We can evaluateJF directly. The first step is to write

JF =E p
m,n

dxm
n

Î2p
em1m2. . .mn

em18m28. . .mn8

3xm1

s1dxm2

s2d
¯ xmn

sndxm18
s1d

xm28
s2d

¯ xmn8
snde−s1/2do

mn

sxm
n d2.

s122d

This factorizes into a product of integrals for fixedn,

JF = em1m2¯mn
em18m28¯mn8E p

m

dxm
s1d

Î2p
xm1

s1dxm18
s1de−s1/2do

m

sxm
s1dd2

3E p
m

dxm
s2d

Î2p
xm1

s2dxm18
s2de−s1/2do

m

sxm
s2dd2

¯

3E p
m

dxm
snd

Î2p
xm1

sndxm18
snde−s1/2do

m

sxm
sndd2.

Each integral in the product is equal to 1 except for those
giving a d function with unit coefficient:

JF = em1m2¯mn
em18m28¯mn8

dm1,m18
dm2,m28

¯ dmn,mn8
= em1m2¯mn

2 = n ! .

s123d

We have then

n0PfV,tg = n ! p
m
S Sm

s2d

2pÎS0S̄
D 1

s1 + Ṽ2dsn+2d/2
. s124d

SincePsV ,td is normalized to 1, we find on integration over
V the result

n0 =
n!

2n/2GSn

2
+ 1Dp

m

Î Sm
s2d

2pS0
s125d

which agrees with previous results in the isotropic limit.
Eliminatingn0 in Eq. s124d we obtain the final result for the
VVPDF:
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PfV,tg =

GSn

2
+ 1D

pn/2 Sp
m

1

v̄m
D 1

s1 + Ṽ2dsn+2d/2
, s126d

whereṼa=Va / v̄a,

v̄m =Î S̄

Sm
s2d , s127d

using Eqs.s77d, s78d, ands81d we have

S̄= S0
1

4
F Ï

I
− S İ

I
D2G , s128d

while Eq. s79d gives

Sm
s2d = S0

1

I
E ddq

s2pddqm
2e−2Osqdst−t0dfsq,t0d s129d

with I defined by Eq.s51d:

I =E ddq

s2pdde−2Osqdst−t0dfsq,t0d. s130d

The needed input to determine the average vortex speedv̄m is
the functionOsqd, the Fourier transform of the operator de-
fined by Eq.s3d, and the initial conditionfsq ,t0d. This result
for PfV ,tg is the anisotropic generalization of Eq.s1d. For
the set of models included here the velocity tail exponent is
sn+2d independent of direction.

VI. ANISOTROPIC CASE

As a particularly simple example, suppose that we have
the choice in the governing Langevin equation

Ôs1dcns1d = − o
a

ca¹a
2cns1d, s131d

or, in terms of Fourier transforms,

Osqd = o
a

caqa
2 . s132d

The associated vortex-velocity probability distribution is
given by Eq.s126d and we need to work out the average
vortex speed given by Eq.s127d. Assuming the initial con-
dition

fsq,0d = Sp
a

s2phad1/2De−s1/2dhmqm
2
, s133d

we have from Eq.s130d

Istd =E dnq

s2pdn Sp
a

s2phad1/2De−s1/2dhmstdqm
2

= p
a
S ha

hastd
D1/2

,

s134d

where

hastd = ha + 4cast − t0d, s135d

from Eq. s128d

S̄

S0
= 2o

m
S cm

hmstd
D2

, s136d

and from Eq.s129d

Sm
s2ds1d
S0s1d

=E dnq

s2pdn qm
2 fsq,t1d =

1

hmstd
. s137d

Putting these results back into Eq.s127d we find the scaling
velocity for a simple anisotropic system is given by

v̄2
m = 2hmstdo

a
S ca

hastd
D2

s138d

=2fhm + 4cmst − t0dgo
a
S ca

ha + 4cast − t0dD
2

. s139d

In the large time limit we have

v̄m
2 =

d

2

cm

t
s140d

and the final form is a simple generalization of the isotropic
result.

VII. CONSERVED ORDER PARAMETER CASE

Let us look at the COP case whereOsqd=−q2+q4. We
choose the rather general initial condition

fsq,0d = S h

2p
Dd/2

e−sh/2dq2
, s141d

which satisfies the normalization condition given by Eq.
s58d. We then need to evaluate the integralI and the numera-
tor in Eq. s129d:

J =E ddq

s2pdd

q2

d
e2tsq2−q4dS h

2p
Dd/2

e−sh/2dq2
= −

2

d
hd/2 ]

] h
sh−d/2Id.

s142d

We see that all of the ingredients contributing tov̄2 can be
expressed in terms ofI and its derivatives. We see thatI can
be written in the form

I = Ĩ0h
d/2E

0

`

dqqd−1e2sq2−q4dt−sh/2dq2
, s143d

whereĨ0 is a constant which depends ond and cancels when
we take ratios. Changing integration variables tox=q2 we
find

I = Ĩ08h
d/2E

0

`

dxxd/2−1e2sx−x2dt−sh/2dx, s144d

where Ĩ08= Ĩ0/2. The leading large time dependence can be
extracted from the integral by completing the square in the
argument of the exponential or using the stationary phase
method. We find, to leading order in larget
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I = Ĩ0Sb

2
Dd/2−1Îp

2t
ef2

, s145d

whereb=1−h/4t, f2=st /2db2. From this result forI we see

that İ =vI where

v = Sd

2
− 1D ḃ

b
+ 2fḟ −

1

2t
=

1

2
−

1

2t
+ Ost−2d. s146d

Going further we haveÏ =v2I +v̇I which leads easily to the
useful result

Ï

I
− S İ

I
D2

= v̇. s147d

Turning to the evaluation ofJ given by Eq.s142d, using Eq.
s145d, we find

J =
1

2dt
F sd/2 − 1d

b
+ 2f

] f

] b
GI . s148d

Working to leading order in time we findJ= I /2d. Putting all
of this together in Eq.s127d,

v̄2 =
v̇

J/I
=

d

t2
s149d

since, from Eq.s146d, v̇=1/2t2+Ost−3d. The final result for
v̄2 is independent of the initial conditions. We see that the
COP average vortex speed is qualitatively slower than the
NCOP case:

v̄COP
2

v̄NCOP
2 <

1

t
. s150d

The computation ofv̄m using Eq.s127d has been checked
numerically in the simplestn=d=2 case whereI can be
evaluated explicitly in terms of an erfc function.

VIII. CONCLUSIONS

We have presented here the detailed calculation of the
VVPDF including the time dependent vortex scaling velocity
v̄m for a class of models beyond the original nonconserved
TDGL models. The class of models studied includes the con-
served TDGL model and certain anisotropic models. In the
conserved case it is found that the average vortex speed falls
off as t−1 compared to the NCOP case wherev̄< t−1/2. It is
our intension to numerically test the predictions for the COP
case.

We see that there is self-consistent confirmation that in
dealing with vortex velocities one can organize things in
terms of averages over an auxiliary Gaussian field. We re-
quire self-consistently that this field and the order parameter
field share the same zeros. A similar development can be
worked out for string defects[5,6].
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